Anxiety, Depression, and the Microbiome: A Role for Gut Peptides.

Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2018;15(1):36-59

Plain language summary

Hormones released in the gut can have an impact in the brain through a bidirectional relationship, known as the gut-brain axis. The release of these hormones may be controlled by the gut microbiota, however exact mechanisms are not fully understood. Most hormones originating in the gut may have a role in obesity development, which is often associated with psychiatric disorders. Understanding the relationship between gut microbiota and depression through gut derived signalling molecules may be of benefit and was the focus of this review. Diversity and stability of the gut microbiota is important for health, which is disrupted during depression and anxiety. The gut microbiota serves to produce brain, hormone and immune signals that can travel to the brain, and can be affected by poor gut health. For those with depression, side effects of anti-depressants can be a disruption of the gut microbiota, however how this impacts symptoms is not fully understood. It was concluded that although there is strong research on the gut microbiota and depression it is still in its infancy. The role of gut microbiota on signalling with the brain and the rest of the body seems to be important for depression and anxiety. This study could be used by healthcare professionals to understand how the gut microbiota can play a role in depression.

Abstract

The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.

Lifestyle medicine

Fundamental Clinical Imbalances : Neurological ; Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Depression and anxiety
Environmental Inputs : Mind and spirit
Personal Lifestyle Factors : Psychological
Functional Laboratory Testing : Not applicable

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable

Metadata

Nutrition Evidence keywords : Neuropeptides ; Immunity ; Endocrine system